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Single crystals of a one-component plasma were ob-
served by optical Bragg diffraction. The plasmas
contained 105 to 106 single-positive beryllium-9 ions
(9Be+) at particle densities of 108 to 109 per cubic
centimeter. In approximately spherical plasmas, single
body-centered cubic (bcc) crystals or, in some cases,
two or more bcc crystals having fixed orientations with
respect to each other were observed. In some oblate
plasmas, a mixture of bcc and face-centered cubic or-
dering was seen. Knowledge of the properties of one-
component plasma crystals is required for models of
white dwarfs and neutron stars, which are believed to
contain matter in that form.

Plasmas, the ionized states of matter, are usu-
ally hot and gaseous. However, a sufficiently
cold or dense plasma can be liquid or solid. A
one-component plasma (OCP) consists of a single
charged species embedded in a uniform, neutraliz-
ing background charge (1 ). Aside from its intrinsic
interest as a simple model of matter, the OCP may
be a good model for some dense astrophysical plas-
mas (2 ), such as the crusts of neutron stars or the
interiors of white dwarfs, where the nuclei are em-
bedded in a degenerate electron gas. According to
calculations, a classical, infinite OCP freezes into a
bcc lattice when the Coulomb coupling parameter

Γ ≡ 1

4πε0

e2

aWSkBT
, (1)

is approximately equal to 170 (3 ). Here, ε0 is the
permittivity of the vacuum, e is the charge of an
ion, kB is Boltzmann’s constant, T is the tempera-
ture, and aWS is the Wigner-Seitz radius, defined by
4πa3

WS/3 = 1/n0, where n0 is the particle density;
Γ is the ratio of the Coulomb potential energy of
neighboring ions to the kinetic energy per ion.

Ion plasmas can be confined and brought to ther-
mal equilibrium in Penning traps. Such systems
have static thermal equilibrium properties equiva-
lent to those of an OCP, where the magnetic field

Time and Frequency Division, National Institute of Standards and Tech-
nology, Boulder, CO 80303, USA.

∗To whom correspondence should be addressed. E-mail: witano@nist.gov
†Present address: Frequency & Time Systems, Beverly, MA 01915, USA.
‡On leave from the Institute of Physics, University of Belgrade, Yu-
goslavia.

takes the place of the background charge (4–6 ). Cal-
culations (7 ) and experiments (8 ) for approximately
spherical plasmas having N ≈ 103 to 104 ions show
concentric shell structures, dominated by surface ef-
fects. Calculations by Dubin and O’Neil (9,10 ) sug-
gest that a bcc lattice might begin to form in the cen-
ter when the number of concentric shells is greater
than about 30, which corresponds, for a spherical
plasma, to N ≈ 105. Ordered structures of tens
of thousands of ions have been observed in a radio-
frequency (rf) quadrupole storage ring (11 ) and in
a linear rf trap (12 ) but, because of the elongated
shapes of these structures, surface effects dominated
and bulk structure was not observed.

Tan et al. have reported Bragg diffraction patterns
from laser-cooled ions in a Penning trap (13 ). For
approximately spherical plasmas with 200,000 ions
or more, the patterns were consistent with bcc or-
dering but not with face-centered cubic (fcc) order-
ing. However, the Bragg patterns were smeared into
circles by the rotation of the plasma about the mag-
netic field axis, so it was not possible to distinguish
between scattering by a single crystal and scattering
by several crystals or to determine the orientation
of the crystals. Here we report the observation of
time-resolved (stroboscopic) Bragg diffraction pat-
terns, from which the effect of the plasma rotation
is removed (14 ).

In our experiment (Fig. 1), the 9Be+ ions were
confined in a cylindrical Penning trap, consisting of
an electrostatic quadrupolar potential and a uniform
magnetic field B = 4.465 T, parallel to the z axis.
The radial electric field leads to a rotation, at fre-
quency ωr, of the plasma about the z axis. For a
given N , an equilibrium state of the plasma can be
parameterized by T and ωr (4–6 ). In the limit of low
T , approached in our experiments, the plasmas are
uniform-density spheroids. For N = 106, a spherical
plasma at a typical density of 4 × 108 cm−3 has a
diameter of 1.7 mm.

The ions are cooled by a laser beam propagating
along the z axis and tuned slightly lower in frequency
than a hyperfine-Zeeman component of the 2s 2S1/2

to 2p 2P3/2 resonance at 313 nm. The laser power
is approximately 50 µW and is focused at the ion
plasma to a diameter of about 0.5 mm. We estimate
that T <∼ 10 mK (15,16 ). For a typical value of
n0 = 4× 108 cm−3, this results in Γ >∼ 200. A series
of lenses forms an image of the diffraction pattern
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FIG. 1.: Experimental setup. Laser light is directed through
the ion plasma in the Penning trap. A diffraction pattern is
created at a plane beyond lens 2, where rays that are par-
allel leaving the plasma are focused to a point. A mirror,
placed near that plane, deflects the light to an imaging pho-
todetector. An aperture placed inside a hole in the mirror
allows diffracted light to be detected by a photomultiplier
tube (PMT). The aperture is placed off the axis of the op-
tical system, so the PMT generates a timing signal as the
diffraction pattern rotates.

on an imaging photodetector.
We used two methods to derive a timing signal

for stroboscopic detection of the Bragg diffraction
patterns. The first (passive method) is based on de-
tecting a photon from a diffracted beam after it has
passed through an aperture (Fig. 1). The second
(active method) is based on phase-locking the ro-
tation of the plasma to an applied rotating electric
field (17,18 ).

Two types of imaging detectors were used. One
(the MCP-RA detector) is an imaging photomul-
tiplier tube (PMT) based on a microchannel-plate
(MCP) electron multiplier and a multielectrode re-
sistive anode (RA) for position sensing. For each
photon, the position coordinates are derived from
the current pulses collected from the different parts
of the RA. The other is a charge-coupled device
(CCD) camera coupled to an electronically gateable
image intensifier.

Time-integrated diffraction patterns were ob-

FIG. 2.: Time-integrated Bragg diffraction pattern ob-
tained with the CCD camera. Rotation of the plasma causes
the diffraction spots to be smeared into circles. The long
rectangular shadow is due to the laser beam deflector. The
small circular shadow is due to the hole in the mirror. The
four linear shadows forming a large square are due to a wire
mesh. Here, ωr = 2π × 128 kHz, n0 = 3.90 × 108 cm−3,
N = 5× 105, α = 1.00, and 2r0 = 1.35 mm.

tained with both the MCP-RA detector and the
CCD camera. Before attempting to observe crystal
diffraction patterns, we tuned the frequency of the
laser beam from several gigahertz to ∼10 MHz below
resonance, causing T to vary from above to below the
liquid-solid transition temperature. The duration of
the frequency sweep was about 10 to 30 s. About
30% of the time, we observed a pattern consisting
of several sharp rings, indicating that a crystal had
been formed (13,14 ). Fig. 2, which is consistent with
a bcc lattice rotating about a 〈100〉 (four-fold sym-
metry) axis (19 ), is an example of such a pattern.

In order to compare quantitatively the observed
Bragg diffraction pattern to a calculated one, it is
necessary to know n0, which can be determined from
ωr [equation 10 of Bollinger et al. (6 )]. In (13 ),
ωr and n0 were determined from the aspect ratio
α = z0/r0, where 2r0 and 2z0 are respectively the
radial and axial diameters of the plasmas [equation
16 of Bollinger et al. (6 )]. The uncertainty in ωr
determined by fitting the side-view images is ∼5%.
If there are discrete Bragg diffraction peaks, ωr can
be determined accurately (to about 0.1%) from time
correlations between scattered photons (Fig. 1). A
typical correlation spectrum is shown in figure 4(a)
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FIG. 3.: Histogram representing the numbers of peaks
(not intensities) observed as a function of qaWS, where
q = ks − ki is the difference between the incident (ki)
and scattered (ks) photon wave vectors. We analyzed 30
Bragg diffraction patterns from two approximately spherical
plasmas having 270,000 and 470,000 ions. The dotted lines
show the expected peak positions, normalized to the center
of gravity of the peak at A ({110} Bragg reflections).

of Tan et al. (14 ).
As reported in (13 ), 14 time-integrated Bragg

diffraction patterns were analyzed for an approxi-
mately spherical plasma having 270,000 ions. Pat-
terns for a larger data set, in which ωr was deter-
mined by photon correlation, are shown in Fig. 3.
The positions of the peaks agree with those calcu-
lated for a bcc lattice, to within the 2.5% uncer-
tainty of the angular calibration. They disagree by
about 10% with the values calculated for an fcc lat-
tice. The ratios of the peak positions of the first five
peaks agree to within about 1% with the calculated
ratios for a bcc lattice. The scatter of the data is
much reduced relative to that of figure 3 of Tan et
al. (13 ), reflecting the more accurate ωr determina-
tion.

In principle, Fig. 3 provides information on the
orientations of the crystals. If the crystals formed
with random orientations, we would expect Fig. 3
to show a greater number of diffraction peaks at C
({211} Bragg reflections) than at D ({220} Bragg
reflections), whereas it actually shows the reverse.
This data set showed a preference for alignment of
the crystals with a 〈100〉 axis along the magnetic
field direction. Preliminary observations indicate
that the degree to which the magnetic field direc-
tion coincides with the symmetry axis of the trap
electrodes influences the crystal orientations.

Tan et al. have noted (13 ) that not all of the
diffraction rings allowed for various orientations of
a bcc lattice were seen at any given time. This in-
dicated that the portion of the plasma having bcc
ordering included at most a few crystals rather than

FIG. 4.: Time-resolved Bragg diffraction pattern of the
same plasma as in Fig. 2. Here and in Figs. 5 and 6,
the small open circle marks the position of the undeflected
laser beam. A bcc lattice, aligned along a 〈100〉 axis, would
generate a spot at each intersection of the grid lines overlaid
on the image. The grid spacing corresponds to an angular
deviation of 2.54× 10−2 rad. Here, ωr = 2π × 125.6 kHz,
n0 = 3.83 × 108 cm−3, N = 5 × 105, α = 0.98, and
2r0 = 1.36 mm.

many randomly oriented crystallites. Fig. 4 is an ex-
ample of a time-resolved diffraction pattern obtained
with the passive timing method and the CCD cam-
era. In this case, the diffraction spots all line up on
a square grid, consistent with a single bcc crystal
oriented so that the incident laser beam is along a
〈100〉 axis. For these data, an angular calibration
was made with an uncertainty of less than 1% with
a mask. The agreement between the observed and
calculated grid spacing was ∼1%.

In order for a diffracted beam to form, ks and ki
must differ by a reciprocal lattice vector (Laue con-
dition) (20 ). In a typical x-ray crystal diffraction
case, satisfying the Laue condition for many spots
requires that the incident radiation have a continu-
ous range of wavelengths. Here, the Laue condition
is relaxed because of the small size of the crystal, so
a pattern is obtained even with monochromatic ra-
diation. If the diameter of the region of the plasma
having crystalline order is L, the mismatch in re-
ciprocal space can be about 2π/L. The diameter
of this plasma was ∼1.36 mm. In Tan et al. (13 ),
approximate lower limits for L of 150 µm and 240
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µm were determined from the widths and intensities
of the Bragg peaks, respectively. For this plasma,
aWS = 8.5 µm, and the cubic lattice spacing is 17
µm. A cube 240 µm wide would be about 14 lattice
spacings in diameter and would contain about 6000
ions.

We also observed patterns that were consistent
with single bcc crystals nearly aligned along other di-
rections, including 〈111〉, 〈115〉, 〈012〉, 〈113〉, 〈110〉,
and 〈013〉. A pattern consistent with a single bcc
crystal oriented along a 〈115〉 direction is shown in
Fig. 5. Some time-resolved patterns were observed
that were not consistent with a single crystal, but
were consistent with two or more crystals having a
fixed relative orientation.

FIG. 5.: A Bragg diffraction pattern with two-fold sym-
metry. It matches the pattern expected for a bcc lattice
oriented along a 〈115〉 direction. A diffraction spot is pre-
dicted at each intersection of the grid lines. The passive
timing method and the MCP-RA detector were used. Here,
ωr = 2π× 149 kHz, n0 = 4.53× 108 cm−3, N = 4× 105,
α = 1.20, and 2r0 = 1.12 mm.

With approximately spherical plasmas (α between
0.6 and 1.4), different diffraction patterns were ob-
served on different cooling cycles. With more oblate
plasmas, the same pattern was observed each time.
A very oblate plasma resembles the planar geome-
try considered by Dubin and O’Neil (9,10 ), in which
a stack of bcc (110) planes was predicted to have
the lowest energy when there are about 60 or more
planes. For some cases with fewer planes, a stack
of fcc (111) planes has lower energy. In a time-
resolved diffraction pattern from a plasma having
α = 0.38 (Fig. 6), the most intense diffraction spots
form a rectangular array, consistent with a bcc lat-
tice oriented along a 〈110〉 direction, that is, a stack
of (110) planes. Weaker diffraction spots, forming a

FIG. 6.: Time-resolved Bragg diffraction pattern showing
a superposition of twofold and sixfold symmetric patterns.
The rectangular grid connects the points for which diffrac-
tion spots are predicted for a bcc lattice oriented along a
〈110〉 direction. An fcc lattice oriented along a 〈111〉 direc-
tion would generate diffraction spots at the vertices of the
hexagon. The orientation of the hexagon has been adjusted
to fit the data, and it differs by about 3◦ from that of the
rectangular grid. The active timing method and the CCD
camera were used. Here, ωr = 2π×70 kHz, n0 = 2.15×108

cm−3, N = 5× 105, and 2r0 = 2.27 mm.

hexagon, are also seen. These appear at the lowest
temperatures. The expected positions of the spots
for the {220} Bragg reflections of an fcc lattice ori-
ented along a 〈111〉 direction, that is, a stack of (111)
planes, are at the vertices of the hexagon overlay. An
ideal hexagonal close-packed lattice, oriented along
the [001] direction, would generate the same hexag-
onal spot pattern. However, it would also generate
another hexagonal spot pattern at a smaller radius,
which is not observed.

Simulations of ion plasmas show hexagonal pat-
terns resembling fcc (111) planes on the layers near-
est the surface (7 ). The hexagonal diffraction pat-
tern in Fig. 6 could be the result of scattering from
surface layers, and the rectangular pattern could re-
sult from scattering from the central region. Some
spots in Fig. 6 do not match either the rectangu-
lar grid or a hexagonal lattice. They may be due
to scattering from a transition region that is neither
bcc nor fcc. Further examination of oblate plasmas
with different thicknesses may enable the transition
from surface-dominated structure to bulk behavior
in a finite, strongly coupled OCP to be studied.
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Wineland, Phys. Rev. Lett. 72, 4198 (1995).

14. A preliminary report of the time-resolved detection has
appeared [J. N. Tan, J. J. Bollinger, B. Jelenković, W.
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